Posts Tagged RDECOM

Army turns to researchers for future lethality

The September/October 2014 issue of Army Technology Magazine focuses on lethality research. Download the current issue at the Army Technology Live blog.

The September/October 2014 issue of Army Technology Magazine focuses on lethality research. Download the current issue at the Army Technology Live blog.

ABERDEEN PROVING GROUND, Md. (Sept. 2, 2014) — The Army of the future may have fewer Soldiers but more lethality thanks to research in precision, scalable effects and improved range.

“Our scientists and engineers are – and have been – redefining the art of the possible to make this enabling technology a reality,” said Dale A. Ormond, director of the U.S. Army Research, Development and Engineering Command. “Our strategy is to build from the Soldier out, equipping our squads for tactical overmatch in all situations.”

In the September/October 2014 issue of Army Technology Magazine, the Army showcases research and development efforts to maintain overmatch.

“The Army has global responsibilities that require large technological advantages to prevail decisively in combat – ‘technological overmatch,’” Army Chief of Staff Gen. Raymond Odierno wrote for the Army’s official blog. “Just as airmen and sailors seek supremacy in the air and on the seas, Soldiers must dominate their enemies on land. Modernizing, especially as end strength is reduced, is the key to ensuring that the Army’s dominance continues.”

Experts predict an individual Soldier of the future armed with a 40mm grenade may have the same lethal effects as 155mm artillery.

Read the rest of this entry »

, , , , , , , , , , , , , , , , ,

No Comments

Disruptive Technology: How the Army Research Laboratory will change the future

Michael Zoltoski leads lethality research at the Weapons and Materials Research Directorate within the U.S. Army Research Laboratory. (U.S. Army photo by Tom Faulkner)

Michael Zoltoski leads lethality research at the Weapons and Materials
Research Directorate within the U.S. Army Research Laboratory. (U.S. Army photo by Tom Faulkner)

By Michael Zoltoski, ARL

Scientists are unlocking the mysteries of power, energy and lethality in the search for new materials and technologies. The U.S. Army Research Laboratory conducts fundamental research, which endeavors to provide revolutionary capabilities to the Army of 2025 and beyond.

In the science of lethality and protection, we face challenges as we look into the future and wonder what it will be like. We make predictions that guide the research of the underlying science that will have a significant impact 20 to 30 years into the future.

Our mantra is “assured delivery, overwhelming effects.” Our research focuses on ballistic science and builds upon ARL’s legacy as the world’s foremost expert in interior, exterior and terminal ballistics.

Read the rest of this entry »

, , , , , , , , , , , , , , , , ,

No Comments

Investing in the Army’s future

The M142 High Mobility Artillery Rocket System, or By David Mc Nall y, RDECOM Public Affairs HIMARS, fires a missile downrange. (U.S. Army photo)

The M142 High Mobility Artillery Rocket System, or HIMARS, fires a missile downrange. (U.S. Army photo)

By David McNally
RDECOM Public Affairs

The U.S. Army vision for lethality science and technology investment is to enable overmatch in weapon systems for both offensive and defensive capabilities.

Army Chief of Staff Gen. Raymond Odierno said attaining overmatch is critical to the Army of 2025.

“The Army has global responsibilities that require large technological advantages to prevail decisively in combat – ‘technological overmatch,’” Odierno wrote for the Army’s official blog in 2012. “Just as airmen and sailors seek supremacy in the air and on the seas, Soldiers must dominate their enemies on land. Modernizing, especially as end strength is reduced, is the key to ensuring that the Army’s dominance continues.”

To achieve that supremacy, Army researchers aggressively pursue technological overmatch.

“In lethality, overmatch means we can defeat the threat to maintain an advantage,” said Keith Jadus, acting director of the lethality portfolio for the Office of the Deputy Assistant Secretary of the Army for Research and Technology. “That means we have an advantage in every sense of the word. Overmatch is much bigger than lethality. We need to be able to see farther, reach farther and to ensure that our forces are protected outside the range and influence of the enemy.”

Read the rest of this entry »

, , , , , , , , , , , , , , , , ,

No Comments

Questions and answers with the Army’s senior noncommissioned officer

Sgt. Maj. of the Army Raymond F. Chandler III talks to Soldiers at an observation post at Forward Operating Base Masum Ghar in Kandahar Province, Afghanistan, April 16, 2014. (U.S. Army photo by Cpl. Alex Flynn)

Sgt. Maj. of the Army Raymond F. Chandler III talks to Soldiers at an observation post at Forward Operating Base Masum Ghar in Kandahar Province, Afghanistan, April 16, 2014. (U.S. Army photo by Cpl. Alex Flynn)

ABERDEEN PROVING GROUND, Md. (Sept. 2, 2014) — Sergeant Major of the Army Raymond F. Chandler III gave an exclusive interview to Army Technology Magazine on the future of lethality.

Army Technology: Even with all the firepower and lethality science and technology can offer, what is the Army’s best weapon?

Chandler: The best weapon we have in the Army is still the U.S. Soldier. He or she is also the most precise weapon that the Army has because of a combination of skills, experience and knowledge. A combination of the technology and the Soldier makes us superior on the battlefield and that’s what makes the Army strong.

Army Technology: How have you seen lethality evolve during your Army career?

Chandler: I’m a tanker by background, and when I came into the Army in 1981, I was on an M60A3 Passive Tank, and then I got upgraded to an M60A3 Thermal. When I went to Fort Carson after three years in the Army, I was on a 1964 model year tank. There was the onset of M1 series, then the Bradley series. Digitization has been one of the most significant upgrades that we’ve made in Armor. I can recall being at Fort Hood in the 4th Infantry Division when Force XXI came about with its digitization. However, I believe we need to do a better job of exercising digitization in the Army – we’ve only scratched the surface. There’s much more that we can do.

If you look at something as simple as gunnery for Bradleys and tanks, we don’t force the system to use the full capabilities of the Bradley of Abrams to ensure we place accurate and timely fires to utilize the capabilities of the architecture that is in the systems.

Army Technology: Do you see the role of Armor changing as we focus on increasing Soldier and squad lethality?

Chandler: I think we have a pretty good platform now in the Armor community with the M1A2 SEP Version 2. We’re looking at a SEP Version 3, which provides even greater capabilities. I think the focus on the Soldier is correct because we have all of this technology in our Armor platforms where it’s easiest to carry and manipulate. But, in the Infantry Brigade Combat Team, we have a lot more work to enable the network within the individual warfighter.

I know we are working to give individual Soldiers some of the firepower formerly available only from Armor or crew-served weapons, but there will always be a need for Armor. Over the past 13+ years, we’ve become very good at counter-insurgency operations, but doctrine says we must also conduct unified land operations. We need to remain proficient as an Army with combined-arms maneuver – going out and fighting near-peer competitors with tanks, Bradleys and Artillery. We cannot assume that our next war will be fought the same way as the last one.

Read the rest of this entry »

, , , , , , , , , , , , , , , , ,

No Comments

Commentary: Future Lethality

Director's Corner: Dale A. Ormond, U.S. Army Research, Development and Engineering Command

Commentary by Dale A. Ormond
Director, U.S. Army Research, Development and Engineering Command

The Army of the future will have fewer Soldiers but will be more lethal. Technology will make that possible, and our scientists and engineers are – and have been – redefining the art of the possible to make this enabling technology a reality.

The Soldier and squad are the foundation of the Army. Our strategy is to build from the Soldier out, equipping our squads for tactical overmatch in all situations. They will connect to an integrated network to give them greater awareness and increased speed for decision-making beyond their adversaries, and they will operate in vehicles that make them more mobile, more lethal, and at the same time, better protected.

The U.S. Army Research, Development and Engineering Command is bringing solutions to these challenge at every point. From aviation to ground vehicles, our researchers and engineers at Redstone Arsenal, Ala., and Detroit Arsenal, Mich., are developing and testing the best technologies to make ground and air vehicles more protective of our Soldiers while providing increased efficiency, affordability and lethality.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , ,

No Comments

Improved mortars

U.S. Army Rangers assigned to 2nd Battalion, 75th Ranger Regiment, fire a 120mm mortar during a tactical training exercise on Camp Roberts, Calif., Jan. 30, 2014. Rangers constantly train to maintain the highest level of tactical proficiency. (US Army photo by Pfc. Nathaniel Newkirk)

U.S. Army Rangers assigned to 2nd Battalion, 75th Ranger Regiment, fire a 120mm mortar during a tactical training exercise on Camp Roberts, Calif., Jan. 30, 2014. Rangers constantly train to maintain the highest level of tactical proficiency. (US Army photo by Pfc. Nathaniel Newkirk)

Redesign to help infantrymen become more lethal, safer

By John B. Snyder, Watervliet Arsenal Public Affairs

The U.S. Army has lightweight mortar systems, range and a significant amount of lethal and destructive fire to close-range combat. Why would anyone think about tweaking something that has already been proven very capable in training and in combat?

“It is all about our troops maintaining the competitive edge over potential adversaries,” said Wayland Barber, chief of the Mortars and Recoilless Rifle Branch at Benét Laboratories at Watervliet Arsenal, N.Y. “Even without funding for new weapons research, Army scientists and engineers are always seeking opportunities to improve weapons systems that are in the field.”

“No sooner than we field a new mortar system, our customers demand that we make it better in regards to extended range, increased lethality or capability, and reduced weight,” Barber said. “This triggers the entire Army research community, from those who improve the lethality of ammunition to those who design the delivery system, to work on parallel and converging fields of science to achieve a common goal.”

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments

Sophisticated simulations help researchers improve weapons

Sgt. 1st Class Mark Minisi (left) and Sgt. 1st Class Christopher Holmes run through a simulation in the Simulated Weapon Environment Testbed, or SWeET at Picatinny Arsenal, N.J. (U.S. Army photo by Erin Usawicz)

Sgt. 1st Class Mark Minisi (left) and Sgt. 1st Class Christopher Holmes run through a simulation in the Simulated Weapon Environment Testbed, or SWeET at Picatinny Arsenal, N.J. (U.S. Army photo by Erin Usawicz)

By Ed Lopez and Cassandra Mainiero, Picatinny Arsenal Public Affairs

As engineers design new weapons or modify existing ones, reducing time and money on development can be critical in providing Soldiers with improved weapons without undue delay.

A new sight may be planned for the M4 rifle, but how well does a prototype design work? Where would be the best place to mount it for the most accuracy and ease of use? Or new, nonlethal weapons may be needed, but will they perform as expected at different ranges?

Using a combination of artificial intelligence, cameras and computers loaded with ballistics data, engineers at Picatinny Arsenal, N.J., have developed a testing environment that can help to answer many critical questions about the performance of existing weapons and new ones planned.

“People are surprised how realistic our simulated environments look,” said Keith Koehler, a mechanical engineer at the Weapons Technology Branch, part of the Weapons Software Engineering Center, Armament Research, Development and Engineering Center. “We had a few friends, who were deployed Soldiers, walk into the scenarios and you could tell to a degree that they lost themselves in the environment.”

Read the rest of this entry »

, , , , , , , , , , , , , , , , , ,

No Comments

Army developing small missile for big mission

The Miniature Hit-to-Kill Interceptor was launched vertically and then conducted a series of maneuvers to demonstrate required performance while capturing data during tests conducted in May 2012 at White Sands Missile Range, N.M. (U.S. Army photo by Michael A. Smith and Louis A. Rosales)

The Miniature Hit-to-Kill Interceptor is launched vertically and then conducts a series of maneuvers to demonstrate required performance while capturing data during tests conducted in May 2012 at White Sands Missile Range, N.M. (U.S. Army photo by Michael A. Smith and Louis A. Rosales)

By Ryan Keith, AMRDEC Public Affairs

One of the world’s smallest guided missiles has a big job to do.

The Miniature Hit-to-Kill, or MHTK, guided missile is about 27 inches long, 1.6 inches in diameter and weighs just 5 pounds. It has no warhead. Rather, as the name implies, it is designed to intercept and defeat rocket, artillery and mortar threats with kinetic energy during a direct hit.

The Aviation and Missile Research Engineering and Development Center is currently developing, fabricating and demonstrating MHTK as part of the Extended Area Protection and Survivability Integrated Demonstration, or EAPS ID. In June, the Army announced plans to complete development of MHTK, proposing a five-year follow-on contract with Lockheed Martin Missiles and Fire Control to complete missile development.

“The technologies being developed and integrated at AMRDEC are truly revolutionary,” said Loretta Painter, AMRDEC EAPS program manager.“The level of miniaturization being achieved with respect to seekers, sensors, control actuation, and electronics packaging is remarkable. Missile components of this size and functionality have never been developed and flight demonstrated; until now.”

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , ,

No Comments

Enhanced grenade lethality: On target even when enemy is concealed

Army engineers worked to integrate sensors and logic devices to scan and filter the environment and autonomously airburst the fuze in the ideal spot. (U.S. Army graphic by Chris Boston)

Army engineers work to integrate sensors and logic devices to scan and filter the environment and autonomously airburst the fuze in the ideal spot. (U.S. Army graphic by Chris Boston)

By Eric Kowal, ARDEC Public Affairs

How does the warfighter launch a grenade at the enemy and ensure it hits the target, especially when the enemy is in what is known as defilade, or concealment, behind natural or artificial obstacles?

Steven Gilbert and a team of about 10 engineers within the Joint Service Small Arms Program are trying to solve that counter-defilade puzzle, which also doubles the grenade’s lethality in the process.

Gilbert is a project officer with the Armament Research, Development and Engineering Center. The engineering team is in the final phase of a project known as Small Arms Grenade Munitions, or SAGM.

The goal is to provide warfighters with the capability of shooting a 40mm low-velocity grenade out of an M203 or M320 rifle-mounted grenade launcher–with the certainty that if their target is hiding under cover or behind an object, damage will still be inflicted.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , ,

No Comments

Questions and Answers with with Brig. Gen. L. Neil Thurgood

Brig. Gen. L. Neil Thurgood, PEO Missiles and Space

ABERDEEN PROVING GROUND, Md. (Sept. 2, 2014) — Brig. Gen. L. Neil Thurgood, Program Executive Officer for Missiles and Space at Redstone Arsenal, Ala., gave an exclusive interview to Army Technology Magazine on the future of lethality.

What is the rationale for increasing firepower and lethality?

The U.S. Army is undergoing a transformation. After a decade of war, Soldiers and equipment are returning to an environment of declining budgets, drawdowns and a shift in operational focus. The Army is facing difficult decisions regarding force structure and modernization divestment. Unfortunately, the threat continues to increase in complexity as we reset, modernize and transform. These challenges are addressed by the Chief of Staff of the Army’s Force 2025 initiative. Force 2025 will prioritize those technologies that support a leaner, more expeditionary force that exceeds current capabilities, allowing for increased firepower and lethality. In this fiscally constrained environment, modernization decisions will be balanced with technology investments to ensure readiness through the transformation.

How do you see technology empowering Soldiers with greater lethality in the future?

PEO Missiles and Space develops, produces, fields and supports U.S. Army, Joint and Coalition missile systems for air and missile defense, direct and indirect fires and aviation platforms. Several of the weapon systems that we manage include Patriot, Javelin, TOW and Hellfire. There is no doubt that the technologies of our missile platforms will be improved through the development efforts of tomorrow. There are several key areas of critical technology development that will empower Soldiers with greater lethality.

Warhead and fuze integration must be developed further. We need single warheads that are advanced enough to be scalable on demand as the mission situation dictates. In the future, the warhead and fuze development must be combined for a single resultant that will provide flexibility while reducing the burden to the Soldier and increasing the effectiveness of the missile system.

Advanced navigation systems that will fuse the single or dual navigation systems of today must be pursued. We must be able to reach off-board the missile system and draw information from other navigation sources that can aid in longer distance engagements and develop more technologies to improve accurate targeting, especially in the end-game.

The development of propulsion energetics should be accelerated. As we reach out further in distance and trend to faster in speeds, we need to reduce the size and foot print of our propulsion systems. This can be done through material synthesis and burn rate enhancement. While we develop these technologies, weapons must remain compliant with insensitive munitions regulations in the ever changing environment of missile applications.

Speed and amount of processing capacity must be increased. In this area, we should develop processing that will increase precision acquisition, especially at the “end game” of the missile engagement. We need to enhance our auto-tracking capabilities. Increased processing must be tied to the next generations of Seeker technology. If we are to combine our current platforms into a single integrated effort, where we can use any sensor to see the threat and the best missile to engage the threat – we need increased ability to process data in real-time. It requires multi-mission platforms with enough processing power and speed to provide a “defense-in-depth” using networked air, ground, naval and space platforms. This will enhance the speed of decision, reduce the kill timeline and subsequently increase the overall probability of success.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , , , ,

No Comments

Future Fires: Integrating technology solutions

An M109A7 Paladin Integrated Management Howitzer fires rounds during a test at Yuma Proving Ground, Ariz. (U.S. Army photo by David Schacher)

An M109A7 Paladin Integrated Management Howitzer fires rounds during a test at Yuma Proving Ground, Ariz. (U.S. Army photo by David Schacher)

By David McNally
RDECOM Public Affairs

Army leaders are looking to the future force and seeking to be revolutionary in their thinking about integrating technology, according to current guidance from Army Chief of Staff Gen. Raymond Odierno.

Department of Defense doctrine describes fires as the use of weapons systems “to create a specific lethal or nonlethal effect on a target. All fires are normally synchronized and integrated to achieve synergistic results.” – Joint Publication 3-09

Army researchers are exploring technology solutions to enable improved lethality and fires. Fire support includes mortars, field artillery, air defense artillery, naval and air-delivered weapons. Successful fire support destroys, neutralizes and suppresses enemy weapons, enemy formations or facilities, and fires.

Read the rest of this entry »

, , , , , , , , , , , , , , , , ,

No Comments

Chemical-biological researchers deliver results

Edgewood Chemical Biological Center engineers fielded the next-generation M50 mask to U.S. Soldiers stationed in Japan and Korea.

Edgewood Chemical Biological Center engineers fielded the next-generation M50 mask to U.S. Soldiers stationed in Japan and Korea.

Soldiers stay lethal in any environment

ECBC Public Affairs

Choking, watering eyes, blistering skin and convulsions are symptoms of imminent death from a chemical weapons attack. The lethality of such attacks, most recently in August 2013 in Syria, sends tremors across the globe.

For Soldiers, chemical weapons present a real danger on the battlefield that requires advanced technology to keep them safe. The Army is investing in science and technology to enable Soldiers to operate in a chemical-biological threat environment.

Scientists and researchers at the U.S. Army Edgewood Chemical Biological Center work to provide better protective equipment, such as the iconic protective mask. As threats evolve, ECBC engineers fielded the next-generation M50 mask to Soldiers stationed in Japan and Korea. The Army is fielding more than 1 million of these masks across the Department of Defense.

“I noticed the difference between the M50 and the old M40 mask as soon as I put it on,” said Sgt. James Tuthill, a training noncommissioned officer stationed at the Marine Corps Air Station Cherry Point, N.C. “I train Marines to be prepared for chemical, biological and radiological hot zones, and this mask provides them with better visibility, easier breathing and greater comfort wearing it. On top of all that, it just looks cool.”

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , , ,

No Comments

Night turns into day: Army researchers enable night lethality

In complete dark from significant standoff, Soldiers use medium wave infrared, or MWIR, technology to turn night into day. (U.S. Army photo)

In complete dark from significant standoff, Soldiers use medium wave infrared, or MWIR, technology to turn night into day. (U.S. Army photo)

By Kim Bell, CERDEC NVESD Public Affairs

In science fiction, technology problems are solved with the stroke of a writer’s pen. In reality, science and technology research takes time and a lot of effort.

“If you’ve seen the movie Predator, you’ve seen a perfect illustration of the process of lethality,” said Dr. Don Reago, director of the Night Vision Electronics Sensors Directorate of the U.S. Army Communications-Electronics Research, Development and Engineering Center at Fort Belvoir, Va. “First, you must identify your target and if in fact it is a target, then you can move in and eliminate the threat.”

In the movie, the predator identifies targets using thermal technology and deducing whether or not they are carrying weapons.

“If potential targets were unarmed they went unharmed, much like how our warfighters operate at present,” Reago said. “Today, the Army’s goal is to improve situational awareness for Soldiers, resulting in increased survivability, decreased civilian casualties and accurate lethality when necessary.”

At NVESD, Army researchers are developing sensors, like the thermal sensors from Predator, as well as image intensification.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , ,

No Comments

The future of 3-D printing

3-D modeling artist Ryan Gilley displays some of the products he designed and printed using advanced manufacturing techniques at the Edgewood Chemical Biological Center, Aberdeen Proving Ground, Md.

3-D modeling artist Ryan Gilley displays some of the products he designed and printed using advanced manufacturing techniques at the Edgewood Chemical Biological Center, Aberdeen Proving Ground, Md.

By David McNally, RDECOM Public Affairs

In past 30 years, 3-D printing has transformed from an immature technology with limited applications to being adopted by industry as an enabler for the next generation of products and systems.

In the next 10 to 15 years, experts expect the technology to revolutionize how commercial and defense products are designed, sourced and sustained.

“As the technology continues to mature, the Army must not only closely watch how industry is applying this game-changing manufacturing process, but also have an active role in shaping the technology, applications and reducing the barriers to implementation within Army systems,” said Andy Davis, Army Manufacturing Technology program manager. “The benefits of actively participating in the advancement of 3-D printing to the Army are great.”

Whether it is manufacturing parts on demand at the point of need, repair of high-value parts at a fraction of the cost and time, or realizing entirely new designs currently unobtainable through traditional manufacturing processes, the Army of the future will rely on this additive manufacturing process, he said.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments

Army explores future of 3-D printing

The July/August 2014 issue of Army Technology Magazine focuses on the future of 3-D printing. Download the current issue by following the link on the homepage.

The July/August 2014 issue of Army Technology Magazine focuses on the future of 3-D printing. Download the current issue by following the link on the homepage.

ABERDEEN PROVING GROUND, Md. (July 1, 2014) — One day, Soldiers will get critical repair parts at the point of need through innovative, reliable 3-D printing systems. This vision of the future will lift the logistics burden and lighten the load to provide more capabilities at less cost, according to Army researchers.

“Imagine the possibilities of three-dimensional printed textiles, metals, integrated electronics, biogenetic materials and even food,” said Dale A. Ormond, director, U.S. Army Research, Development and Engineering Command. “Army researchers are exploring the frontiers of an exciting technology.”

3-D printing is the process of making something from stock materials, such as metal or plastic powder, by adding material in successive layers. It’s also known as additive manufacturing, or AM. In contrast, traditional manufacturing processes often work in the opposite way, by subtracting material through cutting, grinding, milling and other methods.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments

Army invests in 3-D bioprinting to treat injured Soldiers

Research fellow Dr. Young Joon Seol works on a project to print experimental muscle tissue for reconstructive surgery.  (Photo courtesy Wake Forest Institute for Regenerative Medicine)

Research fellow Dr. Young Joon Seol works on a project to print experimental muscle tissue for reconstructive surgery. (Photo courtesy Wake Forest Institute for Regenerative Medicine)

By Dan Lafontaine

A team of scientists scans the surface of severely burned skin, creates a three-dimensional map of the wound with a laser, and then prints skin cells onto the patient using a 3-D bioprinter.

Medical specialists are developing methods to transition this research from the laboratory to clinical trials.

The U.S. Army is a significant proponent and investor in regenerative medicine and 3-D bioprinting, according to officials. Scientists are aiming to advance this new research area to help injured service members recover from the wounds of war.

Dr. Michael Romanko, who provides science and technology management support for the Tissue Injury and Regenerative Medicine Project Management Office with the U.S. Army Medical Material Development Activity, said that improvements in body armor, vehicle design and advanced medical care during the past decade led to Soldiers suffering injuries that would have caused fatalities in previous conflicts.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments

Natick improves understanding with 3-D printed models

Steve Smith, a graphic designer at the U.S. Army Natick Soldier Research, Development and Engineering Center, Natick, Mass., poses with a 3-D and his creations. (U.S. Army photo by David Kamm)

Steve Smith, a graphic designer at the U.S. Army Natick Soldier Research, Development and Engineering Center, Natick, Mass., poses with a 3-D and his creations. (U.S. Army photo by David Kamm)

By Jane Benson

Welcome to Steve Smith’s world. It’s a place where big is small, small is big and anything is possible.

Smith works as a graphic designer at the U.S. Army Natick Soldier Research, Development and Engineering Center. The 3-D-printer guru uses the medium to design, make and improve displays. He works closely with NSRDEC scientists and engineers to create something visual and tangible so the average person can garner a better understanding of NSRDEC-developed products and concepts.

“The models help (subject matter experts) explain themselves to their audience more clearly,” Smith said. “People have something they can pick up and see how it works. They can see what the physical science is behind it. It definitely helps a lot of people to see things in a concrete form.”

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments

Future Soldiers may wear 3-D printed garments, gear

Annette LaFleur, team leader for NSRDEC’s Design, Pattern and Prototype Team, uses a 2D-design program, but she is excited about the possibilities that 3D-printing capabilities hold for her industry and possibly for Soldiers. (U.S. Army photo by David Kamm)

Annette LaFleur, team leader for NSRDEC’s Design, Pattern and Prototype Team, uses a 2-D design program, but she is excited about the possibilities that 3-D printing capabilities hold for her industry and possibly for Soldiers. (U.S. Army photo by David Kamm)

By Jane Benson

Researchers at the U.S. Army Natick Soldier Research, Development and Engineering Center wear many hats and create many products.

“We cover a range of items: field clothing, combat clothing, dress clothing, chem-bio protection, body-armor systems, gloves, hats, helmet covers and experimental garments using new textiles,” said Annette LaFleur, Design, Pattern and Prototype team leader.

The team uses a 2-D design program, and LaFleur is excited about the possibilities that 3-D printing capabilities hold for her industry, in general, and possibly for Soldiers.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments

Natick puts rapid in prototyping

Natick engineers use 3-D printed prototypes to perfect Soldier equipment, including the pack frame for the Modular Lightweight Load-carrying Equipment system and fabric attachments for the pack. (U.S. Army photo by David Kamm)

Natick engineers use 3-D printed prototypes to perfect Soldier equipment, including the pack frame for the Modular Lightweight Load-carrying Equipment system and fabric attachments for the pack. (U.S. Army photo by David Kamm)

By Jane Benson

Army engineers are working to create 3-D solid models and prototypes from computer-aided design data. These prototypes enable researchers to evaluate and detect component and system design problems before fabrication.

The U.S. Army Natick Soldier Research, Development and Engineering Center Computer-aided Design and Rapid Prototyping Laboratory uses an additive manufacturing process of selective laser sintering, known as SLS. The printer relies on lasers to sinter, or melt, powdered, nylon materials layer upon layer into a prototype.

Over the years, researchers have created numerous prototypes and product components. NSRDEC engineers created prototypes for the pack frame of the Modular Lightweight Load-carrying Equipment system and fabric attachments for the MOLLE pack itself. Engineers also created a battery case, as well as the individual electronic components contained in the case, which were later tested and used in the field.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments

Chow from a 3-D printer? Natick researchers are working on it

Natick food technologists already believe they serve up the best food science can offer. Now they are working to incorporate 3-D printing technology into foods for the warfighter. (U.S. Army Photo by David Kamm)

Natick food technologists already believe they serve up the best food science can offer. Now they are working to incorporate 3-D printing technology into foods for the warfighter. (U.S. Army Photo by David Kamm)

By Jane Benson

Army researchers are investigating ways to incorporate 3-D printing technology into producing food for Soldiers.

The U.S. Army Natick Soldier Research, Development and Engineering Center’s Lauren Oleksyk is a food technologist investigating 3-D applications for food processing and product development. She leads a research team within the Combat Feeding Directorate.

“The mission of CFD’s Food Processing, Engineering and Technology team is to advance novel food technologies,” Oleksyk said. “The technologies may or may not originate at NSRDEC, but we will advance them as needed to make them suitable for military field feeding needs. We will do what we can to make them suitable for both military and commercial applications.”

On a recent visit to the nearby the Massachusetts Institute of Technology’s Lincoln Laboratory, NSRDEC food technologist Mary Scerra met with experts to discuss the feasibility and applications of using 3-D printing to produce innovative military rations.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments