Army looks at the future of aircraft survivability

Mark Calafut works for the Intelligence and Information Warfare Directorate of the U.S. Army Communications-Electronics Research, Development and Engineering Center at Aberdeen Proving Ground, Maryland. (U.S. Army photo by Conrad Johnson)

Mark Calafut works for the Intelligence and Information Warfare Directorate of the U.S. Army Communications-Electronics Research, Development and Engineering Center at Aberdeen Proving Ground, Maryland. (U.S. Army photo by Conrad Johnson)

By Mark Calafut, CERDEC

ABERDEEN PROVING GROUND, Md. — The interconnected world of electronic systems provides an opportunity and a challenge for Army Aviation. As the Army develops its next-generation survivability systems, it has the opportunity to cost-effectively leverage advanced commercial electronics and integration technologies. However, it also faces the challenge of maintaining its technological edge, because many of those same commercial electronics are available to potential adversaries.

Today, Army aircraft are protected by a collection of survivability technologies, including onboard electronic survivability systems. Each onboard survivability system is designed to be independently effective at detecting or defeating a specific class of weapon systems, such as electro-optic and radio-frequency guided missiles or ballistic munitions. When adversaries employ these weapon systems against Army aircraft, the appropriate onboard survivability system automatically detects and defeats the threat, protecting the aircraft and crew.

Historically, onboard survivability systems were designed and developed independently. As technology matured and new weapon systems emerged, the Army upgraded existing survivability systems, or in some cases, added entirely new survivability systems to the aircraft. Instead of a truly integrated survivability suite, the result is a piecemeal approach whereby modern aircraft are protected by a collection of proprietary systems, often developed by different contractors and generally not built with open architectures that would much more readily enable their interoperability.

This presents disadvantages. Although many onboard systems require common components, the independent design and development of the systems prevents components from being centralized and shared. The independent designs came from systems not developed from a systems-of-systems approach with an open standard that established a technical vision for interoperable systems.

In many cases, this leads to duplication of components, such as processors or displays that would be unnecessary if the systems were integrated. However, the present lack of integration also prevents onboard systems from communicating with one another and operating cooperatively, which limits reliability and adaptability. For example, if a single protection system fails or is destroyed, the other onboard systems cannot intelligently compensate for that loss.

Continue reading

Advanced dashboard may change the future of Army aviation

ARL's futuristic dashboard would give air traffic controllers, maintainers, and commanders a clear view of the health, usage, and location of any air, ground or unmanned vehicle in their fleet at anytime, anywhere in the world. But inside the vehicle, pilots or other operators would see the Vehicle State Awareness Capability screens, which signal to them the current maneuver capability of the vehicle as well as the health status of critical systems (e.g., propulsion, drive-train, structures) Maintenance operators, and most likely commanders, would focus on the Aviation Tactical Operation Panel, which can give them real time assessments of any vehicle damage, stress or fatigue.

ARL’s futuristic dashboard would give air traffic controllers, maintainers, and commanders a clear view of the health, usage, and location of any air, ground or unmanned vehicle in their fleet at anytime, anywhere in the world. (U.S. Army illustration)

By T’Jae Ellis, ARL Public Affairs

ABERDEEN PROVING GROUND, Md. — A futuristic dashboard could change the way Army aviation operates, allowing for autonomous location tracking and updates on the health of an aircraft even at the material level.

U.S. Army Research Laboratory scientists are conceptualizing technologies to deliver a more accurate and real-time view into aircraft operations of the future.

Today’s black boxes capture basic flight operational information and are not for real-time monitoring. However, possibly three decades from now, Army researchers hope to provide automated real-time solutions for aviators to safely complete their missions, according to Dy Le, an ARL division chief who specializes in sciences for maneuver.

“It’s an integrated capability designed to automatically gauge changes in air, ground, and autonomous systems vehicles’ functional state at the material level; assess vehicles’ maneuvering capabilities taken into account of measured functional state in the context of upcoming or even ongoing missions; and enable operators or Soldiers to maneuver accordingly to achieve mission requirements,” Le said.

The system is called VRAMS, or the Virtual Risk-informed Agile Maneuver Sustainment Intelligent State Awareness System.

Total awareness of location and status of all air assets would provide Army commanders with enhanced situational awareness and the decisive edge. But researchers are also aware of the importance of protecting this information.

“This is one of the challenges that we will be working on as we progress through various stages of VRAMS maturation,” Le said. “Data/information assurance to protect aircraft position/identity is one of critical pieces to safeguarding the national aviation infrastructure from real cyber attacks.”

The dashboard framework would depend on technologies that currently do not exist but would help air traffic controllers, maintenance teams and commanders detect real and potential system and component damage of aircraft.

The concept was inspired by Dr. Bill Lewis, U.S. Army Aviation and Missile Research, Development and Engineering Center Aviation Development director, whose desire was to have fatigue-free aircraft to protect from aircraft catastrophic failures, as well as to reduce operation and sustainment costs.

The project hopes to achieve the Army sustainment goal, for example, zero-maintenance, by containing or eliminating aircraft structural fatigue using the VRAMS Intelligent State Awareness System.

Continue reading

New training system helps aircraft crews defend against ground-fired missiles

A Soldier uses the Man-Portable Aircraft Survivability Trainer as an M176 Pyrotechnic Simulator launches in the background. (U.S. Army photo)

A Soldier uses the Man-Portable Aircraft Survivability Trainer as an M176 Pyrotechnic Simulator launches in the background. (U.S. Army photo)

By Eric Kowal, Picatinny Arsenal Public Affairs

PICATINNY ARSENAL, N.J. — Army engineers have developed an advanced system to train aircraft crews to protect aircraft and crewmembers against threats such as shoulder-fired, surface-to-air missiles.

Since the Vietnam War, such anti-aircraft missiles, especially those known as man portable anti aircraft missiles or MANPADS, have played a critical role in the shooting down military aircraft and their crews.

In order to enable aircraft and crews to survive these missile threats, the U.S. military has developed and deployed a continuously improving suite of aircraft survivability equipment , or ASE assets, that include electronic jammers, lasers and counter-measure flares.

These ASE assets have proven to be very effective at decoying or destroying these threat MANPADS, said James Wejsa, chief of the Pyrotechnic Technology and Prototyping Division of the U. S. Army Armament Research, Development and Engineering Center at Picatinny Arsenal, New Jersey.

However, there has been no significant development and deployment of any realistic improvements in aircraft MANPAD threat training. That is about to change, as Army researchers complete the new system called Man-Portable Aircraft Survivability Trainer. Picatinny engineers said the system is entering the production and fielding support phase.

“This is a realistic training system that we are very excited to be a part of developing and fielding for use in training our aviators,” Wejsa said. “These MANPAD threats are real and very deadly to combat and combat support aircraft if not properly protected.”

Continue reading

Aerial resupply lands on ground troops

Soldiers prepare to the Enhanced Speed Bags System, or ESBS, from a helicopter during the Army Expeditionary Warrior Experiment Speed Bag Operation held Jan. 28, 2014, at Fort Benning, Georgia. (U.S. Army photo by Patrick A. Albright)

Soldiers prepare to the Enhanced Speed Bags System, or ESBS, from a helicopter during the Army Expeditionary Warrior Experiment Speed Bag Operation held Jan. 28, 2014, at Fort Benning, Georgia. (U.S. Army photo by Patrick A. Albright)

By Jeff Sisto, NSRDEC Public Affairs

NATICK, Mass. — The U.S. Army is streamlining efforts to provide squad- and platoon-level ground Soldiers operating in austere environments with an organic aerial resupply capability that will empower and sustain them on the battlefield.

The Enhanced Speed Bag System, or ESBS, fills this capability gap by drastically increasing the survivability rate of critical resupply items such as water, ammunition, rations and medical supplies, which must be air-dropped from helicopters to small units on the ground. The system includes a hands-free linear brake, rope, and a padded cargo bag that can hold up to 200 pounds and be dropped from 100 feet.

ESBS was originally developed by engineers from the Natick Soldier Research, Development and Engineering Center’s Aerial Delivery Directorate and the Armament Research, Development and Engineering Center’s Logistics Research and Engineering Directorate to standardize the improvised airdrop methods used in theater to resupply units in remote locations where traditional resupply methods, such as truck convoys, are too impractical or threat laden.

“The goal was to standardize ad-hoc techniques used with body bags and duffle bags by providing a material solution and giving units enough knowledge and training to utilize it,” said Dale Tabor, NSRDEC’s Aerial Delivery Design and Fabrication team leader.

Continue reading