Posts Tagged ARL

Seeking the ethical robot

Dr. Ronald Arkin speaks to robotics researchers about developing ethical systems Sept. 10, 2014, at a U.S. Army Research Laboratory Colloquium at Aberdeen Proving Ground, Maryland. (U.S. Army photo by Doug Lafon)

Dr. Ronald Arkin speaks to robotics researchers about developing ethical systems Sept. 10, 2014, at a U.S. Army Research Laboratory Colloquium at Aberdeen Proving Ground, Maryland. (U.S. Army photo by Doug Lafon)

By David McNally, RDECOM Public Affairs

Scientists and engineers from the U.S. Army Research Laboratory gathered Sept. 10, 2014 to discuss ethical robots.

Dr. Ronald C. Arkin, a professor from Georgia Tech, roboticist and author, challenged Army researchers to consider the implications of future autonomous robots.

“The bottom line for my talk here and elsewhere is concern for noncombatant casualties on the battlefield,” Arkin said. “I believe there is a fundamental responsibility as scientists and technologists to consider this problem. I do believe that we can, must and should apply this technology in this particular space.”

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , ,

No Comments

Researchers test insect-inspired robot

These nano-quads are the size that the U.S. Army Research Laboratory Micro-Autonomous Systems Technology consortium of researchers envision. The current state is about as compact as a microwave oven. (Photo courtesy of KMel robotics)

These nano-quads are the size that the U.S. Army Research
Laboratory Micro-Autonomous Systems Technology consortium of researchers envision. The current state is about as compact as a microwave oven. (Photo courtesy of KMel robotics)

By Joyce P. Brayboy, ARL Public Affairs

Army researchers are finding they have much to learn from bees hovering near a picnic spread at a park.

Dr. Joseph Conroy, an electronics engineer at the U.S. Army Research Laboratory, part of the Research, Development and Engineering Command, works with robotic systems that can navigate by leveraging visual sensing inspired by insect neurophysiology.

A recently developed prototype that is capable of wide-field vision and high update rate, hallmarks of insect vision, is something researchers hope to test at the manned and unmanned teaming, or MUM-T exercise at the Maneuver Center of Excellence, Fort Benning, Georgia. This project will give us a chance to implement methods of perception such as 3-D mapping and motion estimation on a robotics platform, Conroy said.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , ,

No Comments

Army evaluates DARPA’s futuristic soft exosuit

By David McNally, RDECOM Public Affairs

ABERDEEN PROVING GROUND, Md. (Oct. 28, 2014) — Army researchers are evaluating prototype devices developed for the Defense Advanced Research Projects Agency.

The Defense Advanced Research Projects Agency, known as DARPA, Warrior Web program’s goal is to create a soft, lightweight undersuit to help reduce injuries and fatigue, while improving mission performance. DARPA is responsible for the development of new technologies for the U.S. military.

Researchers from Harvard University’s Wyss Institute for Biologically Inspired Engineering spent the past two years developing a biologically inspired smart suit that aims to boost efficiency through a new approach. A series of webbing straps contain a microprocessor and a network of strain sensors.

Read the rest of this entry »

, , ,

No Comments

Army, DOE studies may lead to unique armor technology

Argonne National Laboratory researchers use a six-circle goniometer to hold and rotate a sample being exposed to the Advanced Photon Source X-ray beam. (Department of Energy photo)

Argonne National Laboratory researchers use a six-circle goniometer to hold and rotate a sample being exposed to the Advanced Photon Source X-ray beam. (Department of Energy photo)

ABERDEEN PROVING GROUND, Md. (Oct. 20, 2014) — Army Research Laboratory scientists say they may be better able to develop novel armor technologies to improve protection levels for U.S. warfighters based on information from a recent Department of Energy study.

For the first time, American researchers observed and measured the dynamic deflection and failure of material fibers as they deformed under high impact and at high speeds during recent experiments at the Argonne National Laboratory, a national laboratory within the DOE.

“If we know at very high fidelity scales how and why an armor or armor material is failing, we may be able to come up with a new material or material response mechanism to circumvent the failure mode and, in turn, significantly increase the armor performance by eliminating this ‘weakest link’ failure mode,” ARL physicist Dr. Michael Zellner said.

Read more …

,

No Comments

Army research team recognized at international nanotechnology conference

Researchers from ARL received the best conference paper award at the 14th IEEE International Conference on Nanotechnology held in Toronto, Canada, Aug. 18-21, for their paper entitled

Researchers from ARL received the best conference paper award at the 14th IEEE International Conference on Nanotechnology held in Toronto, Canada, Aug. 18-21, for their paper entitled “Gold Nanocluster-DNase 1 Hybrid Materials for DNA Contamination Sensing.” Team members shown (left to right) are Dr. Mark Griep, WMRD; Dr. Abby West, WMRD; Dr. Dan Cole, VTD; and Dr. Shashi Karna, WMRD. (U.S. Army photo by Joyce M. Conant)

ABERDEEN PROVING GROUND, Md. (Sept. 16, 2014) — Researchers from the U.S. Army Research Laboratory received the best conference paper award at the 14th IEEE International Conference on Nanotechnology held in Toronto, Canada, Aug. 18-21.

IEEE Nano is one of the largest nanotechnology conferences in the world, bringing together the brightest engineers and scientists through collaboration and the exchange of ideas. There were a total of 263 conference proceeding papers submitted for the conference; 180 oral presentations and 83 posters.

The winning paper was one of the seven finalists selected. It was entitled “Gold Nanocluster-DNase 1 Hybrid Materials for DNA Contamination Sensing,” and was co-authored and presented by Dr. Abby West, biochemist, ORISE postdoctoral fellow at the Weapons and Materials Research Directorate.

Read more …

No Comments

Collaboration to Alliance

Industry, academia and government collaboration highlights different approaches

By Joyce Brayboy, ARL Public Affairs

Collaboration

Collaborative Technology and Research Alliances are partnerships between the Army, industry and academia that are focusing on the rapid transition of innovative technologies for the Army’s future force.

The collaboration between industry, academia and the government is a key element of the alliance concept as each member brings with it a distinctly different approach to research.

ARL researchers pull from the expertise of Research, Development and Engineering Command organizations to keep the program oriented toward solving the Army’s technology challenges.

Academia is instrumental for its cutting-edge innovation; the industrial partners are able to leverage existing research results for transition and to deal with technology bottlenecks.

The multidisciplinary research teams bring together world class research and development talent and focus it on the Soldier.

ARL has a history of successful collaborations bringing together the triad of industry, academia and government, dating back to the 1990s.

There are currently four active CTAs:

Two Collaborative Research Alliances, or CRAs, were awarded in 2012: Electronic Materials, and Materials in Extreme Dynamic Environments. Finally, the most recent Collaborative Research Alliance in the area of Cyber Security was announced last year.

Each CTA and CRA has a distinctive mission and focus. The MAST CTA conducts research and transitions technology that will enhance warfighter’s tactical situational awareness in urban and complex terrain through the autonomous systems. The Network Science CTA performs cross-cutting research of common underlying science among social and cognitive, information, and communications networks to enhance effectiveness in network-enabled warfare.

The Robotics CTA enables the creation of future highly autonomous unmanned systems and permits those systems to conduct military operations in mixed environments.

The Cognition and Neuroergonomics CTA conducts research leading to fundamental translational principles of the application of neuroscience-based research and theory to complex operational settings.

The Multi-Scale Multidisciplinary Modeling of Electronic Materials CRA is developing a quantitative understanding of materials from the atomic scales to advance the state of the art in electronic, optoelectronic and electrochemical materials and devices.

The Materials in Extreme Dynamic Environments CRA is establishing the capability to design materials for use in specific dynamic environments, especially high strain-rate applications.

The most recent CRA came about when ARL established a group led by Pennsylvania State University last year. The alliance includes ARL, CERDEC, academia and industry researchers to explore the basic foundations of cyber-science issues in the context of Army networks.

For information about the Collaborative Technology or Research Alliances, call Kelly Foster at (301) 394-5503.

, , , , , , , , , , , , , , , , , , , , , ,

No Comments

Joint Insensitive Munitions

Researchers, engineers work to improve safety of munitions.

Researchers, engineers work to improve safety of munitions.

Researchers, engineers work to improve safety of munitions

By William H. Ruppert, IV, P.E., Program Manager, Joint Insensitive Munitions Technology Program

It’s the year 2045 and your grandchild is deployed to the hot spot of the future, commanding a ground unit combating the latest terrorist group. The vehicle he is riding in is suddenly struck by two rocket propelled grenades. The vehicle interior is breached and the ammunition inside sustains a direct hit, but none of them explode and the crew has only minor injuries. They quickly assume their respective defensive positions from inside the vehicle and return fire on the aggressors, decisively defeating them. Their training and their equipment have not failed them. They will live to fight another day.

This may sound too farfetched or even impossible, but at the U.S. Army Research Laboratory, researchers lead and support the Joint Insensitive Munitions Technology Program, or JIMTP, to develop safer munitions with the goal of ensuring the safety of our future warfighters.

The JIMTP is a unique partnership of government, industry and academic partners. The Office of the Secretary of Defense has program oversight, but it’s managed by ARL, and laboratories within the Air Force and Navy provide technical management. The partnership is essential to ensure the maximum return on investment in a time of increasing fiscal constraint.

These partners are working together to reinvent the way munitions work – making them almost impossible to ‘go off’ when the warfighter doesn’t want them to – while at the same time improving the lethality, reliability, safety and survivability of munitions.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , , , , ,

No Comments

ARL teams with university partners to transform future materials

Army researchers are designing materials for the future.

Army researchers are designing materials for the future.

By T’Jae Gibson ARL Public Affairs

Army researchers are forging new paths in material development to bring to Soldier equipment and supplies tougher than steel, from materials that don’t yet exist.

As part of a 10-year program involving partners from universities and industry, Army Research Laboratory scientists are investigating novel approaches that will result in the development of new classes of materials to protect Soldiers, their warfighting and communication equipment and the combat vehicles they rely on to get them in and out of warzones. Building upon expertise in coupling materials together to arrive at the best soldier solutions like ballistic vests and helmets, the ARL-led collaborative research team is forging a new path to develop new materials. They’re taking unprecedented approaches to examine materials. They will design the atomic level structures down to the crystal and molecular level to create transformational materials that will be used in future uniforms, electronic devices, armored vehicles and anything else Soldiers touch, or touch Soldiers.

When researchers achieve this understanding, Soldiers could then be outfitted with 30 percent lighter weight, more robust but less cumbersome protection equipment; weapon systems that have five to 10 times their current energy output; 30 percent more battlefield power; and electronics with 30 percent longer battlefield lifetimes. These improvements will free up Soldiers to focus on devastating the enemy’s willpower and ability to act.

This program requires Army scientists to model and examine materials in extreme environments.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , , ,

No Comments

ARL, University partnerships

Bringing together research and development talent to improve the ability of the Army’s Future Force

By Jenna Brady, ARL Public Affairs

To develop revolutionary capabilities for Soldiers on the battlefield, the U.S. Army Research Laboratory brings together world-class research and development talent by leveraging the vast intellectual capital of the nation’s universities.

The lab makes this possible through programs and alliances including University Affiliated Research Centers, Collaborative Technology Alliances and Collaborative Research Alliances.

UARCs are university-led collaborations among universities, industry and Army laboratories that conduct basic, applied and technology demonstration research.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , , , ,

No Comments

Bio-technological advances

Army Research Office extends University of California at Santa Barbara at the Institute for Collaborative Biotechnologies research.

Army Research Office extends University of California at Santa Barbara at the Institute for Collaborative Biotechnologies research.

Army Research Office extends University of California at Santa Barbara at the Institute for Collaborative Biotechnologies research

ARL Public Affairs

Army experts, along with leading university professors and industry partners have been collaborating over the last decade to explore biological systems that have the potential to drive sweeping bio-technological advances for Soldiers.

The research is led by the University of California at Santa Barbara at the Institute for Collaborative Biotechnologies, or ICB, a university affiliated research center.

The Army Research Office extended the contract in December 2013, providing an additional $48 million over three years to study high-performance biological systems and the translation of these to engineering systems of benefit to Soldiers.

“Looking ahead, the value first and foremost will be a more comprehensive integration between the ICB and partners in Army and industry,” said Robert J. Kokoska, who manages the relationship with the center for ARO.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , , ,

1 Comment

Spotlight: Research scientist Peter Khooshabeh

Peter Khooshabeh is an ARL research fellow in ICT’s virtual humans group. His work explores the social effects that virtual humans can have on people in areas including culture, thought and emotion.

By Orli Belman, USC Institute for Creative Technologies

When ICT’s Peter Khooshabeh was an undergraduate at the University of California at Berkeley he worked on developing a virtual practice tool for surgeons. The idea was that an individual interacting in this simulated scenario would show improved outcomes in the operating room. But when Khooshabeh spent time in a real hospital, he observed that technical skill was just one aspect of surgical success. Any useful virtual environment would also need to capture the interpersonal dynamics of such a high-stress, multi-person setting.

“At first we were focused on putting just one person in this virtual environment but there are many players involved in any given surgery,” Khooshabeh said, a research fellow in ICT’s virtual humans research group. “I came to understand that the key to improving performance may not be in the quality of the technology, but in how much you understand about people and how they perceive one another”.

Khooshabeh went on to earn a Ph.D. in cognitive psychology from UC Santa Barbara and continues to leverage technology as a tool to better understand people.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , , ,

No Comments

Back to the Future

Medal of Honor recipient Staff Sgt. Ty Carter is scanned in ICT's Light Stage 6, a nine-meter sphere with more than 6,000 LED lights that can recreate a person under any lighting condition. (USC Institute for Creative Technologies)

Medal of Honor recipient Staff Sgt. Ty Carter is scanned in ICT’s Light Stage 6, a nine-meter sphere with more than 6,000 LED lights that can recreate a person under any lighting condition. (USC Institute for Creative Technologies)

USC Institute for Creative Technologies brings training of tomorrow to Soldiers today

By Orli Belman, USC Institute for Creative Technologies

At the University of Southern California Institute for Creative Technologies, researchers specializing in the art and science of creating an immersive experience work with the U.S. Army Research Laboratory to advance interactive simulation-based solutions for training Soldiers, teaching students, treating patients and more.

In 1999, the Army and USC joined together to establish ICT as a University Affiliated Research Center, or UARC, that would combine the creative talents of the film and game industries with world-class university research in engineering, education and cinematic arts. The goal: to make simulations more effective through the study and development of emerging digital technologies and engaging narrative-driven experiences.

Today, transitioned prototypes from this forward-looking lab can be seen throughout the Army, including video games designed to prepare Soldiers in negotiations and stability operations, virtual role players programmed to provide practice in conducting sensitive interviews and virtual reality systems developed to enhance therapies for post-traumatic stress and traumatic brain injuries.

Read the rest of this entry »

, , , , , , , , , , , , , , , , , , , , , ,

No Comments

U.S. Army, Australian leaders talk research, development cooperation

Dale A. Ormond (right), director of the U.S. Army Research, Development and Engineering Command, discusses his organization with Dr. Alex Zelinsky, Australia’s chief defense scientist, at Aberdeen Proving Ground, Md., Jan. 27.

Dale A. Ormond (right), director of the U.S. Army Research, Development and Engineering Command, discusses his organization with Dr. Alex Zelinsky, Australia’s chief defense scientist, at Aberdeen Proving Ground, Md., Jan. 27.

ABERDEEN PROVING GROUND, Md. (Jan. 28, 2014) — Australia’s chief defense scientist met with U.S. Army leaders Jan. 27 to explore opportunities for research and development partnerships.

The U.S. Army’s engagement with foreign partners in fostering science and engineering is essential to ensuring that Soldiers, as well as American allies, have access to the world’s best technology, said Dale A. Ormond, director of the U.S. Army Research, Development and Engineering Command.

“We are trying to expand our international outreach,” Ormond said. “Seventy percent of the money spent worldwide on science and technology is outside the U.S. There are great scientists and engineers everywhere. [It's important to] go find out who they are and work with them.”

Read more: http://go.usa.gov/BC6w

, , , , , , , , , , , , , , , , , , , , , ,

No Comments

Results from Army, university tests could improve auto, aviation industry standards

Tensor 900 six degrees of freedom (6-DoF) shaker

Tensor 900 six degrees of freedom (6-DoF) shaker

ABERDEEN PROVING GROUND, Md. (Nov. 13, 2013) — Results from a recent study that looked at how battlefield-born vibrations, like those from blasts and heavy armored vehicles, for example, are leading research scientists to rethink military vehicle testing and evaluation methods that could also, eventually, improve automotive and aviation industry standards.

A group of Army and University of Maryland researchers and engineers have developed reliability tests to better capture unforeseen failures in ground and air vehicle designs before the military adopts systems and components.

Ed Habtour, principal investigator on the project at the U.S. Army Research Laboratory, said the physics of failure, known as PoF, based reliability models and test methods developed by ARL, U.S. Army Materiel Systems Activity Analysis, or AMSAA, Aberdeen Test Center, the University of Maryland’s Center for Advanced Life Cycle Engineering, or CALCE, TEAM Corporation and Data Physics Corporation were run on the TEAM Tensor 900 six degrees of freedom, referred to as 6-DoF, shaker, one of only two of its kind in the world.

Read more …

No Comments

Army bolsters nation’s cybersecurity through STEM outreach

During the "Network and Cyber" week, students first learned about the complexities of computer networks and the steps required for a single e-mail to be sent. In this activity, more than 30 students each represented a step that an e-mail must take to go from one network to another as they sent a message across the classroom. The Gains in the Education of Mathematics and Sciences course took place in July 2013 at Aberdeen Proving Ground, Md.

During the “Network and Cyber” week, students first learned about the complexities of computer networks and the steps required for a single e-mail to be sent. In this activity, more than 30 students each represented a step that an e-mail must take to go from one network to another as they sent a message across the classroom. The Gains in the Education of Mathematics and Sciences course took place in July 2013 at Aberdeen Proving Ground, Md.

ABERDEEN PROVING GROUND, Md. — Computer networks face persistent cyber threats from the nation’s adversaries. The future defenders of cyberspace, America’s students, honed their skills this summer as they learned from U.S. Army scientists and engineers who are experts in the field.

Cybersecurity practitioners from across the U.S. Army Research, Development and Engineering Command joined forces to spark an interest and share their knowledge with high-school students as part of the Army Educational Outreach Program at APG.

Two RDECOM organizations — Army Research Laboratory and the Communications-Electronics Research, Development and Engineering Center — partnered to develop and deliver two Gains in the Education of Mathematics and Sciences cyber programs in July.

Read more:

http://go.usa.gov/WrFC

, , , , , , , , , , , , , ,

No Comments

Army research featured on cover of prestigious journal

A novel biomaterial discovery methodology for the design of biomolecules that bind to metal surfaces is demonstrated. By combining laboratory experimentation with computational methods, ARL scientists determined that the helical structure of the peptides allows for preferential alignment of groups that coordinate with the surface of a bulk aluminum alloy. Artistic rendition by Eric Proctor (ARL, SEDD).

A novel biomaterial discovery methodology for the design of biomolecules that bind to metal surfaces is demonstrated. By combining laboratory experimentation with computational methods, ARL scientists determined that the helical structure of the peptides allows for preferential alignment of groups that coordinate with the surface of a bulk aluminum alloy. Artistic rendition by Eric Proctor (ARL, SEDD).

ADELPHI, Md. (Sept. 23, 2013) — Did you know that U.S. Army Research Laboratory scientists can reprogram cellular machinery to develop protein materials that nature has yet to discover?

ARL researchers report on just this type of breakthrough in an article highlighted on the inside front cover of the Sept. 6 issue of Advanced Materials.

Advanced Materials is a premier material science journal, featuring interdisciplinary “research … at the cutting edge of the chemistry and physics of functional materials.”

Read more …

, , ,

No Comments

Army researchers develop technology benefiting biomedical, security applications

Dr. Grace Metcalfe, researcher at the U.S. Army Research Laboratory's Adelphi Laboratory Center in the Sensors and Electron Devices Directorate, is part of the team that has developed and successfully tested new ways of generating THz emissions. (U.S. Army photo by Doug LaFon)

Dr. Grace Metcalfe, researcher at the U.S. Army Research Laboratory’s Adelphi Laboratory Center in the Sensors and Electron Devices Directorate, is part of the team that has developed and successfully tested new ways of generating THz emissions. (U.S. Army photo by Doug LaFon)

ADELPHI, Md. (Sept. 19, 2013) — Current terahertz-based sources suffer from a number of drawbacks including high cost, complex fabrication, and restrictions associated with large externally applied voltages.

The most common of these THz source technologies are photoconductive switches comprised of a semiconductor material and two parallel metal strips that act as electrodes through which a large voltage is applied externally.

Read more …

, , , ,

No Comments

Army’s manufacturing improvements yield lighter body armor

Dr. Shawn Walsh (left), Agile Manufacturing Technology team leader at Army Research Laboratory, and Mike Thompson, an ARL contractor technician, unfurl a lightweight ballistic material for integration into body-armor processes at Aberdeen Proving Ground, Md., Aug. 14, 2013.

ABERDEEN PROVING GROUND, Md. (Aug. 28, 2013) — Soldiers facing rugged terrain and extreme temperatures are continually searching for ways to reduce the weight of their gear.

In a search for solutions to this persistent issue, U.S. Army scientists and engineers have preliminarily demonstrated body armor that is 10 percent lighter through new manufacturing processes.

The U.S. Army Research, Development and Engineering Command, known as RDECOM, along with its industry partners, has leveraged the Army’s Manufacturing Technology Program to spur the Advanced Body Armor Project.

 Read more:

http://go.usa.gov/D3Zd

, , , , , , , , , , , , , ,

No Comments

‘Long-Lived Power’ could extend life for battlefield sensors

Photo Credit: Doug LaFonJohn Russo, who uses 3D printing to fabricate the Long-Lived Power battery casings, works with Marc Litz, Ph.D., both of the Power and Energy Division at U.S. Army Research Laboratory, to measure output voltage on space-grade photovoltaic cells before bonding tritium capsule to a photovoltaic wafer.

ADELPHI, Md. (Aug. 5, 2013) — “Long-Lived Power” sounds like it could be an energy revolution, a revolutionary of sorts within the family of far-reaching energy solutions for the battlefield — because it uses radioisotopes.

It is a power source that supports low power for years — 100 microwatts of average power — according to its developers.

Scientists at the U.S. Army Research Laboratory are testing tritium, a radioisotope that is produced in nuclear reactors, to power sensors. This alternative energy source could give sensors — the eyes and ears of warfighters — a battlefield energy source capable of lasting a 13-year half-life. Half-life is the measure of time it takes for the material to fall to half of its value.

Read more …

No Comments

Collaboration leads to new rocket propulsion technology

Photo Credit: AMRDECA team of Army researchers developed a new gel-propellant engine called the vortex engine.

ABERDEEN PROVING GROUND, Md. (Aug. 5, 2013) — A team of Army researchers developed a new gel-propellant engine called the vortex engine.

Michael Nusca, Ph.D., Robert Michaels and Nathan Mathis were recently recognized by the Department of the Army with a 2012 Army Research and Development Outstanding Collaboration Award, or RDA, for their work titled, “Use of Computational Fluid Dynamics in the Development and Testing of Controllable Thrust Gel Bipropellant Rocket Engines for Tactical Missiles.”

Nusca, a researcher in Army Research Laboratory, or ARL’s, Propulsion Science Branch at Aberdeen Proving Ground, explained the new technology.

Read more …

No Comments